Electrostatic field and partial Fermi level pinning at the pentacene-SiO(2) interface.

نویسندگان

  • Liwei Chen
  • R Ludeke
  • Xiaodong Cui
  • Alejandro G Schrott
  • Cherie R Kagan
  • Louis E Brus
چکیده

Monolayer islands of pentacene deposited on silicon substrates with thermally grown oxides were studied by electric force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) in ultrahigh vacuum (UHV) after prior 10 min exposure to atmospheric ambient. On 25-nm-thick oxides, the pentacene islands are 0.5 V higher in electrostatic potential than the silicon dioxide background because of intrinsic contact potential differences. On 2-nm-thin oxides, tunneling across the oxides allows Fermi level equilibration with pentacene associated states. The surface potential difference depends on the doping of the underlying Si substrates. The Fermi level movement at the pentacene SiO(2) interface was restricted and estimated to lie between 0.3 and 0.6 eV above the pentacene valence band maximum. It is proposed that hole traps in the pentacene or at the pentacene-oxide interface are responsible for the observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces.

Density functional theory calculations are performed to unravel the nature of the contact between metal electrodes and monolayer MoS2. Schottky barriers are shown to be present for a variety of metals with the work functions spanning over 4.2-6.1 eV. Except for the p-type Schottky contact with platinum, the Fermi levels in all of the studied metal-MoS2 complexes are situated above the midgap of...

متن کامل

Molecular Orientation-Dependent Interfacial Energetics and Built-in Voltage Tuned by a Template Graphene Monolayer

Highly transparent and conductive monolayer graphene was used as a template to tune the crystal orientation of pentacene from generic standing-up (001) to lying-down (022) in neat films. Spatially resolved Kelvin probe force microscopy (KPFM) was used to reveal the energy levels of pentacene thin films grown on substrates with and without the template graphene layer, as well as the energy level...

متن کامل

Defective Heterojunction Models

Fermi-level pinning behavior has been observed at the free surface, oxide interface, metal interface, MBE grown surface, stop-regrown homojunction, and misfit-dislocation pinned heterojunction of GaAs. Theories of such behavior are numerous and disparate. Theories of ideal heterojunction band offsets are less diverse, but have still not converged to a single mechanism. Recent studies of heteroj...

متن کامل

Direct measurement of Dirac point energy at the graphene/oxide interface.

We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-a...

متن کامل

Enhanced Performance Consistency in Nanoparticle/TIPS PentaceneBased Organic Thin Film Transistors

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2011, 21, 3617–3623 In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin fi lms and the performance of solution-processed organic thin-fi lm transistors (OTFTs). This approach is taken to control crystal anisotropy, which is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 5  شماره 

صفحات  -

تاریخ انتشار 2005